RAJAGIRI SCHOOL OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)

B.TECH. DEGREE PROGRAMME

FIRST SEMESTER

(2020 ADMISSIONS)

100908/CH922S	ENGINEERING				
	CHEMISTRY LAB				

SYLLABUS

Rajagiri Valley, Kakkanad, Kochi 682 039, Kerala, INDIA

www.rajagiritech.ac.in

COURSE CODE	COURSE NAME	L	T	P	CREDIT	YEAR OF INTRODUCTION
100908/CH922S	ENGINEERING CHEMISTRY LAB	0	0	2	1	2020

- 1. **Preamble:** To impart scientific approach and to familiarize with the experiments in chemistry relevant for research projects in higher semesters.
- 2. Prerequisite: Experiments in chemistry introduced at the plus two levels in schools

3. Syllabus

List of Experiments (Minimum 8 Mandatory)

- 1. Estimation of total hardness of water-EDTA method
- 2. Potentiometric titration
- 3. Determination of cell constant and conductance of solutions.
- 4. Calibration of pH meter and determination of pH of a solution
- 5. Estimation of chloride in water
- 6. Identification of drugs using TLC
- 7. Determination of wavelength of absorption maximum and colorimetric estimation of Fe^{3+} in solution
- 8. Determination of molar absorptivity of a compound (KMnO₄ or any water soluble food colorant)
- 9. Synthesis of polymers (a) Urea-formaldehyde resin (b) Phenol-formaldehyde resin
- 10. Estimation of iron in iron ore
- 11. Estimation of copper in brass
- 12. Estimation of dissolved oxygen by Winkler's method
- 13. (a) Analysis of IR spectra (minimum 3 spectra) (b) Analysis of ¹H NMR spectra (minimum 3 spectra)
- 14. Flame photometric estimation of Na⁺ to find out the salinity in sand
- 15. Determination of acid value of a vegetable oil
- 16. Determination of saponification of a vegetable oil

4. Reference Books

- 1. G. Svehla, B. Sivasankar, "Vogel's Qualitative Inorganic Analysis", Pearson, 2012.
- 2. R. K. Mohapatra, "Engineering Chemistry with Laboratory Experiments", PHI Learning, 2017.
- 3. Muhammed Arif, "Engineering Chemistry Lab Manual", Owl publishers, 2019.

- 4. Ahad J., "Engineering Chemistry Lab manual", Jai Publications, 2019.
- 5. Roy K Varghese, "Engineering Chemistry Laboratory Manual", Crownplus Publishers, 2019.
- 6. Soney C George, Rino Laly Jose, "Lab Manual of Engineering Chemistry", S. Chand & Company Pvt Ltd, New Delhi, 2019.
 - **5. Course Outcomes:** After the completion of the course the student will be able to
- **CO 1:** Understand and practice different techniques of qualitative and quantitative chemical analysis to generate experimental skills and apply these skills to various analyses
- **CO 2:** Develop skills relevant to synthesize organic polymers and acquire the practical skill to use various chromatographic techniques like TLC for the identification of drugs and chemical compounds
- **CO 3:** Develop the ability to understand and explain the use of modern spectroscopic techniques for analysing molecular chemical structure by interpreting IR and NMR spectra of organic compounds
- CO 4: Acquire the ability to understand, explain and use instrumental techniques for chemical analysis
- CO 5: Learn to design and carry out scientific experiments as well as accurately record and analyze the results of such experiments
- **CO 6:** Function as a member of a team, communicate effectively and engage in further learning Also understand how chemistry addresses social, economical and environmental problems and why it is an integral part of curriculum
- **CO** 7: An ability to analyze the quality of water by determining its chemical parameter

6. Mapping of course outcomes with program outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3				2							3
CO2	3				3							3
CO3	3				3							3
CO4	3				3							3
CO5	3				1							3
CO6	3				1							3
CO7	3		1			1	1					

7. Mark Distribution

Total	CIE								
	Attendance	Internal	Lab work/ Record/Viva-	Total					
		Examination	voce						
		(ESE)							
100	20	30	50	100					

8. End Semester Examination Pattern

Written Objective Examination of one hour